GCE

Mathematics

Advanced GCE
Unit 4736: Decision Mathematics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 \& (i) \& Route: \(A-C-B-E-H\) \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1
\end{tabular} \& [5] \& \begin{tabular}{l}
Any reasonable presentation of information \\
Updating at \(B\) \\
All temporary labels correct (and no extras) \\
All permanent labels correct, cao (condone blank at \(A\)) \\
Order of labelling correct, cao \\
cao - or in reverse
\end{tabular} \& \begin{tabular}{l}
Seeing 8 as a temporary label at \(B\) and 7 as a permanent label \\
Not follow through \\
Not follow through \\
Not follow through \\
Not follow through
\end{tabular} \\
\hline \& (ii) \& \begin{tabular}{l}
Odd nodes: B, E, G, H
\[
\begin{aligned}
\& B E+G H=1+9=10 \\
\& B G+E H=7+7=14 \\
\& B H+E G=8+6=14
\end{aligned}
\] \\
Minimum is 10
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { B1 }
\end{aligned}
\] \& [4] \& \begin{tabular}{l}
Odd nodes (may be implied from working) \\
At least one correct total \((10,14,14)\) \\
All three pairings and correct totals seen 10 cao
\end{tabular} \& \begin{tabular}{l}
Using \(B, E, G, H\) and no others \\
Correct method and value(s), not follow through \\
Both pairings (eg \(B E, G H\)) and totals, all correct \\
Unsupported 10 gets B1
\end{tabular} \\
\hline \& (iii) \& \begin{tabular}{l}
Need \(D\) and \(H\) odd, so need to consider pairings using \(B, D, E, G\) \\
The minimum pairing is \(B E+D G=1+1=2\) (any other pairing must be longer) \\
A possible route is DCABEHGDGFCBEFH
\end{tabular} \& B1
B1

B1 \& [3] \& \begin{tabular}{l}
Seen or implied (without having to check route)

Repeat $B E$ and $D G$ stated (without having to check route)

A possible route

 \&

Do not use their route to deduce this, it could, however be seen from their pairings

Need to see $B E, D G$ identified, not just $1+1=2$

15 letters, starting at D ending at H and repeating $B E$ and $D G$
\end{tabular}

\hline
\end{tabular}

3	(i)	Cannot have an odd number of odd vertices (nodes) (Note: the question does not say that this graph has to be simply connected)	B1	[1]	Three odd nodes Must have an even number of odd nodes $1+2+3+3=9$ which would mean $41 / 2$ arcs	Not from a diagram of a specific case (and not from talking about what the vertices of order 3 connect to, for example) Not just 'sum = 9'
	(ii)	Not simple Cannot have a vertex of order 4	B1	[1]	Identifying that the graph cannot be simple and an explanation that involves the vertex of order 4 Condone 'not connected ... and not simple ...' with a valid reason for the 'not simple' part	If the term 'simple' is not used the answer must talk about the vertex of order 4 forcing repeated arcs or loops (allow either) or equivalent
	(iii)	All nodes are even (and graph is connected)	B1	[3]	Vertex orders all even A labelled connected graph with four vertices A, B, C, D with orders $2,2,2,4$ respectively A valid Eulerian trail for their graph, written down unambiguously (not just indicated on diagram)	2, 2, 2, 4 are all even Must be connected and labelled as well as having orders 2, 2, 2, 4 May start at any vertex but must close the tour by finishing at the start vertex. May write as a list of arcs, directions not necessary
	(iv)(a) (b) (c)	a, b and c can only take the values 0,1 or 2 None of a, b and c are zero Two must be odd and the other even	B1	[3]	Condone 'must be 1 or 2 ', condone $0 \leq a, b, c \leq 2$ Must be less than 3 'Not 0 ' or 'all positive' or equivalent Accept 'one ≥ 2 and others ≥ 1 ' Allow 'two odd'	Do not accept <2 or $1 \leq a, b, c \leq 2$ Allow 'must be 1 or 2' (using (a) as well as (b)) Condone $1 \leq a, b, c \leq 2$ Not specific values ((using (a) and (b) as well as (c) gives $1,2,1$. This does not get this mark)

4 (i)		In the first pass through bubble sort we compare the first value with the second and swap if the first is larger than the second. We then compare the value that is now second with the third value and swap if the second is larger than the third. We continue like this to the end of the list. At this point the largest value will be in the final position and we can ignore it in subsequent passes. In the second pass we start again by comparing the first and second values, but we now only need to sort the first $n-1$ values. We continue in this way until either we have a list o length 1 to sort or we have a pass in which no swaps were made.	M1	[5]	Must be describing what happens in the general case, not just using a specific numerical example		
		Compare first value with second, swap if first is larger (allow 'compare first and second')			Compare first pair and swap if needed If first is bigger than second swap them		
		A1	Then compare second with third, and so on		Describing moving along list (but not shuttling back), if any ambiguity do not give this mark		
		M1			Last value guaranteed		
		A1	Start again but only using first $n-1$ values		Repeat but with final value already fixed		
		B1	or 'stop when whole list has been considered' Allow 'until only one item left' or 'until no swaps' or 'until all have permanent labels' or equivalent		Not just 'stop when list is sorted' Not just 'all numbers are in correct places'		
	(ii)		Start with: $\quad 3 \begin{array}{llllll} & 10 & 8 & 2 & 611\end{array}$			Result of each pass must be easily found, do not imp	y from muddled working
			$\begin{array}{lllllll} & \text { After first pass: } & 3 & 8 & 2 & 6 & 10\end{array} 11$ May label before pass is made, which will look like five passes but is OK	M1 M1 A1	[3]	38261011 shown at end of $1^{\text {st }}$ pass $2^{\text {nd }}$ pass correct, follow through their list from $1^{\text {st }}$ pass if possible Final list correct (cao) and exactly four passes used (depends on both method marks)	Misread rule (a single value miscopied or omitted from the list given in the question) will penalise the A mark only, but miscopying from one line of their working to the next could also lose one or both M marks
	(iii)		3 10 2 8 6 11	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	3108 and 11 correct All correct, in correct order (cao)	In correct order of planks and cuts (could be vertical or with first at bottom line)
	(iv)		$\begin{array}{\|lll\|} \hline 11 & 8 & \\ 10 & 6 & 3 \\ 2 & & \\ \hline \end{array}$	B1		All correct, in correct order (cao)	May also see 11108632
			Little waste from first two planks and a piece of length 18 feet from the third, which may be more useful than three medium length waste pieces	B1	[2]	Unused piece 18 feet, may be more useful than three shorter pieces ($5 \mathrm{ft}, 6 \mathrm{ft}$ and 9 ft) left over Little waste from first two planks	Referring to the lengths of the pieces left over Not 'it uses fewer cuts' (it doesn't, they both use six cuts), must have all six pieces
	(v)	$\begin{array}{\|lll\|} \hline 11 & 6 & 3 \\ 10 & 8 & 2 \end{array}$	B1		This cutting plan, planks in either order, pieces within planks in either order	Must have all six pieces	
		Two planks and four cuts	B1	[2]	2 planks, 4 cuts or 2 planks each cut twice	Do not imply ' 2 planks', must be stated	

5	(i)	$x=$ number of parcels per hour from new customers $y=$ number of parcels per hour from occasional customers $z=$ number of parcels per hour from regular customers	B1	[1]	Accept identifying x with new, y with occasional and z with regular with reference to 'number of parcels per hour' and 'customers' missing or wrong Condone $x=$ new, $y=$ occasional, $z=$ regular	Do not accept if x, y and z are not separately identified, unless order is unambiguous So, 'the number if parcels from the three types of customer' or 'number of new, occasional and regular parcels' are not enough, unless supported by words like 'in that order' or 'respectively'
	(ii)	Contents: $3 x+5 y+2 z \leq 60$ Postage: $4 x+3 y+3 z \leq 60$ Address: $3 x+4 y+3 z \leq 60$ $x \geq 0, y \geq 0, z \geq 0$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } \end{aligned}$	[4]	cao need not have identified with contents, not < cao need not have identified with postage, not < cao need not have identified with address, not < cao	Allow use of slack variables (assume slack ≥ 0) and allow scaled versions, provided they are correct If slack variables have been used then these must also be identified as non-negative here
	(iii)	Can ignore the z term Objective function becomes $P=8 x+7 y$ Constraints become $\begin{gathered} 3 x+5 y \leq 60 \\ 4 x+3 y \leq 60 \\ 3 x+4 y \leq 60 \\ x \geq 0, y \geq 0 \end{gathered}$	B1 B1	[2]	Saying that we can ignore z (or equivalent), or writing out the objective with z removed Writing out all their constraints with z removed (must have at least two linear constraints that involve both x and y)	Need not say 'Maximise' and may omit ' P =' Follow through their constraints Condone omission of non-negativity constraints
	(iv)	$(20,0)(0,12) \quad(15,0)(0,20) \quad(20,0)(0,15)$	B1 M1 A1	[3]	Axes scaled and labelled appropriately Boundaries of all their constraints shown correctly, at least two linear constraints that involve both x and y, extending far enough for feasible region to plausibly be seen Correct graph with correct shading or feasible region correct and clearly identified (cao) Need not shade $x<0$ and $y<0$ May also show a profit line (eg joining $(0,8)$ to $(7,0)$ or $(0,16)$ to $(14,0))$	x and y labels (and some scale markings on both) Lines joining $(20,0)$ to $(0,12) ;(15,0)$ to $(0,20)$ and $(20,0)$ to $(0,15)$ or follow through theirs Tolerance ± 1 little square on axes Not follow through for A mark

	Checking P at (one or more of the) vertices of their feasible region (to nearest integer or better) or using a profit line (of negative gradient) $(15,0)$ gives $P=120$ (10.9, 5.45) gives $P=125.45$ $(0,12)$ gives $P=84$ Check 10.9 parcels from new customers and 5.45 parcels from occasional customers on average each hour.	M1 A1 A1	[3]	May be implied from correct answer (to nearest integer or better) Optimum point correct to nearest integer or better - accept $(11,5)$ or $(11,6)$, allow $(10,6)$ Giving $\left(\frac{120}{11}, \frac{60}{11}\right)$ or $\left(10 \frac{10}{11}, 5 \frac{5}{11}\right)$ or $(10.9,5.5)$ or (10.9, 5.4), or better, need not be in context	Correct vertex marked or answer 125 (or better) for optimum value or either of $(11,5)$ or $(11,6)$ (or better) given as optimum point implies M mark Following through their graph. Do not follow through to a different optimal vertex for the A marks Allow '10.9 new and 5.5 occasional' (or 5.4 or better) Allow ' $x=10.9$ and $y=5.5$ ' (or 5.4, or better)
(v)	x and y must now be integers $(10,6)$ gives $P=122 \quad(11,5)$ gives $P=123$ $(9,6)$ gives $P=114 \quad(12,4)$ gives $P=124$ $(8,7)$ gives $P=113 \quad(13,2)$ gives $P=118$ $(7,7)$ gives $P=105 \quad(14,1)$ gives $P=119$ $(6,8)$ gives $P=104 \quad(15,0)$ gives $P=120$ and so on Check 12 parcels from new customers and 4 from occasional customers	B1 M1 A1	[3]	Recognising that x and y must both be integers, or implied from answer - even if this is the same as the answer to part (iv) Testing feasible integer points or using a profit line on integer feasible points, may be implied from answer being given as one of $(10,6),(11,5)$ or $(12,4)$ cao, need not be in context	Sufficient to give any integer point as final solution Sufficient to test one integer point in their feasible region Allow grid point dots on graph Accept ' 12 new and 4 occasional'or' $x=12, y=4$ '
(vi)	May not have enough parcels of each type Cannot do two checks at the same time on the same parcel	B1	[1]	Any valid reason	Not a criticism of the values for timings or points given in the question

6	(i)	$\begin{aligned} & a=6-x, b=8-y, c=10-z \\ & \text { Minimise } 2 a-4 b+5 c-30 \\ & \Rightarrow \text { minimise } 12-2 x-32+4 y+50-5 z-30 \\ & \Rightarrow \text { minimise }-2 x+4 y-5 z \\ & \Rightarrow \text { maximise } 2 x-4 y+5 z \\ & 3 a+2 b-c \geq 10 \\ & \Rightarrow 3(6-x)+2(8-y)-(10-z) \geq 10 \\ & \Rightarrow 3 x+2 y-z \leq 14 \\ & -2 a+4 c \leq 35 \\ & \Rightarrow-2(6-x)+4(10-z) \leq 35 \Rightarrow 2 x-4 z \leq 7 \text { (given) } \\ & 4 a-b \leq 20 \\ & \Rightarrow 4(6-x)-(8-y) \leq 20 \quad \Rightarrow-4 x+y \leq 4 \text { (given) } \\ & a \leq 6 \Rightarrow x \geq 0, b \leq 8 \Rightarrow y \geq 0, c \leq 10 \Rightarrow z \geq 0 \end{aligned}$	B1 M1 A1	[3]	Replacing a, b and c in objective to get $2 x-4 y+5 z$ Replacing a, b and c in the first three constraints to get the given expressions Not necessary to show how $a \leq 6, b \leq 8, c \leq 10$ give $x \geq 0, y \geq 0, z \geq 0$	Evidence of 2(6-x) - 4(8-y) + 5(10-z), with or without -30 and with or without 'minimise' Replacing a by $6-x, b$ by $8-y$ and c by $10-z$ in all three constraints Convincingly achieving the given expressions, including dealing with the inequality signs
	(ii)	P x y z s t u RHS 1 -2 4 -5 0 0 0 0 0 3 2 -1 1 0 0 14 0 2 0 -4 0 1 0 7 0 -4 1 0 0 0 1 4	M1 A1	[2]	Constraint rows correct, with three slack variable columns Objective row correct	Condone P column missing Rows and columns may appear in any order Slack variable columns must consist of 0 's and a 1 Not the negatives of these values (2-450000)
		P x y z s t u RHS 1 0 4 -9 0 1 0 7 0 0 2 5 1 -1.5 0 3.5 0 1 0 -2 0 0.5 0 3.5 0 0 1 -8 0 2 1 18 New row 3 = (row 3$) \div 2$ (even if -ve pivot) New row 1 = row $1+2$ (new row 3) New row 2 = row $2-3$ (new row 3) New row 4 = row $4+4$ (new row 3) Pivot row method may be implied	M1 A1 B1 ft	[3]	An augmented tableau with four basis columns (or three with P column missing), non-negative values in final column and value of objective having not decreased Correct tableau after one iteration (cao) Method seen and correct, any reasonable form Or: new row 1 = row $1+$ original row 3 new row 2 = row $2-1.5$ (original row 3) new row 3 = row $3 \div 2$ new row 4 = row $4+2$ (original row 3)	M mark is for any tableau that satisfies these conditions and is different from the original Basis columns must consist of 0 's and a 1 A mark is not follow through and requires a P col May use 'row 3' to mean original or new row, provided consistent eg for row 1 allow any of +2 r3, r1 +2 r3, +2 pr, etc or +r 3 , r1+r3, etc

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

